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SUMMARY

This paper introduces a stable �ux-splitting solver for one-dimensional (1D) shallow water equations.
This solver is speci�cally designed to satisfy a strengthened consistency condition for stationary solu-
tions that ensures the stability and accuracy of the scheme. It applies to channels with variable depth
and width, including terms modelling friction at bottom and vertical walls. Some numerical tests by
comparison to both analytical solutions and experimental measurements show the good performances
of the scheme. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper deals with �ux-splitting numerical solvers for one-dimensional (1D) shallow water
equations with source terms.
We shall consider shallow water �ows in straight channels with variable depth and width,

in the presence of friction e�ects. We assume that this �ow is governed by the 1D shallow
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water equations

@
@t
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@
@x

F(W ) =G(x;W ) in ]0; L[× ]0; T [ (1)

W =W (x; t)=

(
h(x; t)

q(x; t)

)
(2)

where h(x; t) and q(x; t), respectively, denote the height of the water column and the discharge
across the channel section at position x∈ [0; L] and time t ∈ [0; T ]. F denotes the physical �ux,
given by

F(W )=




q

q2

h
+
1
2
gh2


 (3)

and G is the source term, which may take into account variable depth and width of the
channel, and also friction e�ects. The precise de�nition of G shall be given later on.
Equation (1) should be completed with initial and suitable boundary conditions in order to

have a well-posed problem.
We shall consider �nite-volume numerical solvers. Given a mesh {xi}N+1i= 0 , and a time step

�t, we shall approximate the solution W (x; t) of (1) by a piecewise constant function that
takes the constant value Wn

i on the cell ]xi−1=2; xi+1=2[× ]tn; tn+1[, where xi+1=2 = (xi + xi+1)=2
and tn= n�t. The values {Wn

i }n; i are obtained as the solution of general explicit solvers of
the form

Wn+1
i −Wn

i

�t
+

�(Wn
i ;W n

i+1)− �(Wn
i−1; W

n
i )

�xi
=G(xi−1; xi; xi+1; W n

i−1; W
n

i ;W n
i+1) (4)

complemented with suitable initial and boundary conditions, and where

�xi= xi+1=2 − xi−1=2

Here, the function �(Wi;Wi+1) is usually known as the numerical �ux, while the function
G(xi−1; xi; xi+1; Wi−1; Wi;Wi+1) is called the numerical source term.
In general, the presence of source terms in non-linear hyperbolic conservation laws sets

speci�c stability and accuracy restrictions to numerical solvers. A stable and accurate dis-
cretization of such equations seems to strongly rely, in addition to the well-known upwinding
of standard hyperbolic conservation laws, upon high enough spatial resolution (Cf. References
[1–4, 15]). In the case of shallow water equations, this has been formalized by Berm�udez and
V�azquez Cend�on in Reference [5] as an enhanced consistency condition. We shall precisely
de�ne here this condition, as it is at the base of our analysis.

De�nition 1 (Berm�udez–V�azquez condition)
Scheme (4) is said to verify the exact (respectively, approximated) Berm�udez–V�azquez con-
sistency condition with respect to a stationary solution �W of problem (1) if it exactly
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(respectively, up to an error O(�xi)2) solves this stationary solution at grid nodes, i.e.

1
�x
[�( �Wi; �Wi+1)− �( �Wi−1; �Wi)] = G(xi−1; xi; xi+1; �Wi−1; �Wi; �Wi+1)

(resp:;+O(�xi)2)

∀xi ∈ ]0; L[; where �Wi= �W (xi)

(5)

Although there is still no theoretical analysis of the role played by this condition, in practice
it ensures stable and accurate computations for 1D and 2D �ow models.
In Reference [6] the methods of Roe and Van Leer are extended to shallow water equa-

tions with source terms, in order to verify the Berm�udez and V�azquez condition. However,
no extensions of �ux-splitting methods, such as Steger–Warming’s or Vijayasundaram’s are
reported. We recall that �ux-splitting methods can be derived when the �ux F veri�es a
property of homogeneity, concretely when F(W )=A(W )W: This is the case of, for example,
the 1D or 2D shallow water equations as well as Euler equations.
Flux-splitting methods have properties di�erent from �ux-di�erence methods, as can be

the behaviour in sonic points and shock waves. For example, the �ux-splitting method of
Vijayasundaram does not present problems of lack of viscosity in sonic points. This may
make it preferable the use of �ux-splitting methods in some situations.
We introduce in this paper a �ux-splitting scheme that veri�es the enhanced consistency

condition. It is a mixing of Steger–Warming and Vijayasundaram schemes, the �rst being
applied to the momentum conservation equation and the second one to the mass conservation
equation. Methods such AUSM and the �ux-splitting method of VanLeer (see Reference
[7]) present a similar treatment, but for Euler equations. The objective is to distinguish the
treatment of the equations that contains the terms of pressure.
Our main methodological innovation is based upon the following idea: the upwinding of the

source term is usually performed via a projection onto the eigenvectors of the �ux matrix. In
our case, these eigenvectors are re-scaled by constants, which are determined by imposing the
enhanced consistency condition. This gives more �exibility to our scheme, while preserving
the correct upwinding directions on each characteristic �eld.
We obtain a scheme which exactly calculates a stationary solution for variable depth and

width of the channel, and up to order two if friction terms are included. It performs quite
closely to the extension of Roe’s scheme, in fact both schemes yield very close solutions with
practically the same computational e�ort.
Furthermore, the technique that is introduced for the treatment of source terms can be ap-

plied to Euler equations and to the generalization of other �ux-splitting methods, for example,
directly Steger–Warming’s or Vijayasundaram’s.
The paper is organized as follows. Section 2 introduces the main solver we are dealing

with. Section 3 is devoted to the application of this solver to channels with variable depth
and constant width, in the absence of friction e�ects. We analyse the enhanced consistency
condition, and present some numerical tests for analytical solutions. In Section 4, we also
prove that our scheme veri�es the enhanced consistency condition for source terms including
variable depth and width, and also friction terms. We test this general case by comparison
with both analytic solutions and experimental measurements. Finally, in Section 5, we apply
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our technique for extending �ux-splitting solvers to a di�erent solver, in order to test the
�exibility of our technique.

2. NUMERICAL SOLVER

In this section, we introduce the numerical �ux and the numerical source term for the solver
we consider, for general source terms.

2.1. Numerical �ux

Flux-splitting solvers are based upon the decomposition F(W )=A(W )W , where

A(W )=


 0 1

−q2

h2
+
1
2
gh 2

q
h


 (6)

Matrix A is diagonalizable if h¿0, concretely A=X�X−1, where

�=

(
�1 0

0 �2

)
; �1 =

q
h
+

√
1
2
gh; �2 =

q
h
−
√
1
2
gh (7)

and

X =

(
1 1
�1 �2

)
(8)

This naturally yields the �ux decomposition

F(W )=F+(W ) + F−(W )

where

F±(W )= (A)±(W )W with (A)±(W )=X�±X−1 (9)

and

�+ =

(
max(�1; 0) 0

0 max(�2; 0)

)
; �−=

(
min(�1; 0) 0

0 min(�2; 0)

)
(10)

In accordance with this decomposition, the �ux-splitting schemes are built from numerical
�ux functions of the form

�(Wi;Wi+1)=�+(Wi;Wi+1) + �−(Wi;Wi+1) (11)

with

�+(Wi;Wi+1)=B1(Wi;Wi+1)Wi; �−(Wi;Wi+1)=B2(Wi;Wi+1)Wi+1 (12)
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where B1 and B2 are 2× 2 matrices that should be speci�ed for each actual scheme. �+ and
�−, respectively, represent upwinding to the left and to the right.
A consistent scheme for the homogeneous equation is obtained if B1 and B2 verify

F+(W )=B1(W;W )W; F−(W )=B2(W;W )W (13)

Our scheme is based upon Vijayasundaram (Cf. References [8, 9]) and Steger–Warming
(Cf. References [7, 10]) schemes, which, respectively, correspond to

B1(Wi;Wi+1)=A+
(
Wi +Wi+1

2

)
; B2(Wi;Wi+1)=A−

(
Wi +Wi+1

2

)

and

B1(Wi;Wi+1) = A+(Wi); B2(Wi;Wi+1) = A−(Wi+1)

We shall apply Vijayasundaram’s scheme to the �rst equation in system (1) and Steger–
Warming’s scheme to the second one. Let us denote by (a1)+ (resp., (a2)+) the �rst (resp.,
second) row in matrix (A)+, and similarly (a1)− and (a2)−. We de�ne our �ux-splitting
matrices as

B1(Wi;Wi+1)=
(
(a1)+((Wi +Wi+1)=2)

(a2)+(Wi)

)
; B2(Wi;Wi+1)=

(
(a1)−((Wi +Wi+1)=2)

(a2)−(Wi+1)

)
(14)

This corresponds to the following numerical �ux:

�(Wi;Wi+1)=
(
(a1)+((Wi +Wi+1)=2)

(a2)+(Wi)

)
Wi +

(
(a1)−((Wi +Wi+1)=2)

(a2)−(Wi+1)

)
Wi+1 (15)

Notice that B1 and B2 verify (13), and consequently the scheme is consistent for the homo-
geneous equation.

2.2. Numerical source term

To de�ne the numerical source term for our scheme, we shall give a generalization of the
procedure de�ned in Berm�udez and V�azquez Cend�on [6].
Let us consider a ‘upwind’ diagonalizable matrix Ã, which �lters out negative eigenvalues

of the �ux matrix A. Following References [10, 11], we decompose the source term as

G(xi;Wi)= 1
2 [I + |Ã|Ã−1]G(xi;Wi) + 1

2 [I − |Ã|Ã−1]G(x;W ) (16)

where |Ã| is a matrix whose eigenvalues are the absolute values of the eigenvalues of Ã
with the same eigenvectors. Thus, the �rst and second summands, respectively, correspond to
positive and negative eigenvalues. This suggests to split the numerical source term as

G(xi−1; xi; xi+1; Wi−1; Wi;Wi+1)=GL(xi−1; xi;Wi−1; Wi) + GR(xi; xi+1; Wi;Wi+1) (17)
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with

GL(xi−1; xi;Wi−1; Wi)

=
(xi − xi−1)=2

�xi
[I + |B(Wi−1; Wi)|B−1(Wi−1; Wi)]G̃(xi−1; xi;Wi−1; Wi) (18)

GR(xi; xi+1; Wi;Wi+1)

=
(xi+1 − xi)=2

�xi
[I − |B(Wi;Wi+1)|B−1(Wi;Wi+1)]G̃(xi; xi+1; Wi;Wi+1) (19)

where B(Wi;Wi+1) is some approximation of Ã((Wi +Wi+1)=2) and G̃(xi; xi+1; Wi;Wi+1) is some
approximation of G(xi+1=2; Wi+1=2). Both B(Wi;Wi+1) and G̃(xi; xi+1; Wi;Wi+1) should be provided
to have a completely de�ned scheme.
In Reference [5], matrix Ã is actually chosen as A. This yields extensions of Roe’s and

Van Leer schemes satisfying the enhanced consistency condition. However, this choice does
not provide an extension of standard �ux-splitting schemes satisfying such condition. Instead,
we observe that the upwinding must be governed by the signs of the eigenvalues of A, while
its eigenvectors play a less important role in the upwinding of the source term. We de�ne

Ã= X̃�X̃−1 where �=

(
�1 0

0 �2

)
(20)

and X̃ =PX , P being an ‘eigenvectors scaling’ matrix, de�ned as

P=

(
c1 0
0 c2

)
with c1 �=0; c2 �=0 (21)

We then de�ne B(Wi;Wi+1) as

B(Wi;Wi+1)= Ã
(
Wi +Wi+1

2

)
(22)

As we shall see, this introduces some �exibility in our �ux-splitting scheme, which will verify
the enhanced consistency condition for some choices of the scaling matrix P.
Notice that if B= Ã, the upwinding matrices B1 and B2 of the �ux term de�ned in (14)

and matrix B are related by

B=P(B1 + B2)P−1

if all are evaluated at the same point.

3. VARIABLE DEPTH

In this section, we analyse the enhanced consistency condition, and perform some numerical
tests for our scheme, in the case of variable depth and constant width of the channel, without
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considering friction terms. In this case, the source term in (1) reads

G(x;W )=

(
0

ghH ′(x)

)
(23)

where H (x) is the channel bottom pro�le function, so that the bottom equation is z=−H (x).
We assume that H (x) is a positive and continuously di�erentiable function on [0; L].
In this case, a stationary solution of Equations (1) is given by (Cf. Reference [5])

�W (x)=

(
H (x)
0

)
(24)

We state the following result.

Theorem 1
When c1 = 1, c2 = 2, the �ux-splitting scheme (4), (15), (17) through (22) satis�es the exact
Berm�udez–V�azquez condition with respect to the stationary solution (24) if

G̃(x; y; (hL; qL); (hR ; qR))=




0

g
hL + hR
2

H (y)−H (x)
y − x


 (25)

This scheme also satis�es the approximated Berm�udez–V�azquez condition if

G̃(x; y; (hL; qL); (hR ; qR))=




0

g
hL + hR
2

H ′
(
x + y
2

)

 (26)

Proof
We start by proving that if G̃ is given by (25), then our scheme satis�es the enhanced
consistency condition. We assume c1 = 1 as in fact the only relevant constant is c= c2=c1.
For simplicity of notation, we shall denote �W (x) by �W and �W (xi) by �Wi. Using (7), (8)

and (10) we deduce

(A)+( �W )=
1
2



√
1
2
gh 1

1
2
gh

√
1
2
gh




(A)−( �W )= (A− A+)( �W )=
1
2


−

√
1
2
gh 1

1
2
gh −

√
1
2
gh




Thus,

(a1)+( �W )=
1
2

(√
1
2
gh; 1

)
; (a2)+( �W )=

1
2

(
1
2
gh;

√
1
2
gh

)
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30 T. CHAC �ON, E. D. FERN �ANDEZ, AND M. G �OMEZ

and

(a1)−( �W )=
1
2

(
−
√
1
2
gh; 1

)
; (a2)−( �W )=

1
2

(
1
2
gh;−

√
1
2
gh

)

The numerical �ux is then given by

�( �Wi; �Wi+1) =



(a1)+

(
hi + hi+1

2
; 0
)

(a2)+(hi; 0)



(

hi

0

)

+



(a1)−

(
hi + hi+1

2
; 0
)

(a2)−(hi+1; 0)



(

hi+1

0

)
=
1
2


−

√
1
2
g
hi + hi+1

2
(hi+1 − hi)

1
2
g(h2i + h2i+1)



(27)

Consequently,

1
�xi

(�( �Wi; �Wi+1)− �( �Wi−1; �Wi))

=
1
2
1
�xi


 1

2

√
g(hi−1 + hi)(hi − hi−1)− 1

2

√
g(hi + hi+1)(hi+1 − hi)

1
2g(h

2
i+1 − h2i−1)


 (28)

We next calculate the numerical source. Using

X̃ ( �W )=

(
1 1
c�1 c�2

)
with �2 =−�1

we deduce

Ã( �W )=

(
0 1=c

c�1
2 0

)
; |Ã( �W )|=

(
�1 0
0 �1

)

and

Ã−1( �W )=

(
0 1=(c�21)
c 0

)
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where �i= �i( �W ). From these expressions, we obtain

I + |Ã( �W )|Ã−1( �W )=


 1

1
c�1

c�1 1


=




1
1

c

√
1
2
gh

c

√
1
2
gh 1




I − |Ã( �W )|Ã−1( �W )=


 1 − 1

c�1
−c�1 1


=




1
−1

c

√
1
2
gh

−c

√
1
2
gh 1




Now, using B( �W1; �W2)= Ã(( �W1 + �W2)=2), from Equations (18) and (19) we obtain the expres-
sions for GL and GR,

GL(xi−1; xi; �Wi−1; �Wi)

=
(xi − xi−1)=2

�xi




1
1

c

√
1
2
g
hi−1 + hi

2

c

√
1
2
g
hi−1 + hi

2
1






0

g
hi−1 + hi

2
H (xi)−H (xi−1)

xi − xi−1




=
1
2
1
�xi



2
c

√
1
2
g
hi−1 + hi

2
(H (xi)−H (xi−1))

g
hi−1 + hi

2
(H (xi)−H (xi−1))


 (29)

GR(xi; xi+1; �Wi; �Wi+1)

=
(xi+1 − xi)=2

�xi




1
−1

c

√
1
2
g
hi + hi+1

2

−c

√
1
2
g
hi + hi+1

2
1






0

g
hi + hi+1

2
H (xi+1)−H (xi)

xi+1 − xi




=
1
2
1
�xi




−2
c

√
1
2
g
hi + hi+1

2
(H (xi+1)−H (xi))

g
hi + hi+1

2
(H (xi+1)−H (xi))


 (30)
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Then, from Equation (17) and the previous expressions we obtain

G(xi−1; xi; xi+1; �Wi−1; �Wi; �Wi+1)

=
1
2
1
�x



1
c

√
g(hi + hi−1)(H (xi)−H (xi−1))− 1

c

√
g(hi + hi+1)(H (xi+1)−H (xi))

g
hi−1 + hi

2
(H (xi)−H (xi−1)) + g

hi + hi+1

2
(H (xi+1)−H (xi))




When h≡H , this expression coincides with (28) if c2 = 2. Thus, in this case we obtain the
enhanced consistency condition.
Let us next assume that the function G̃ is given by (26). Taking into account the preceding

analysis, and considering that

H ′
(
x + y
2

)
=

H (y)−H (x)
y − x

+ O(�x2)

we deduce that for this choice of G̃ our scheme satis�es the approximated consistency con-
dition.

3.1. Numerical tests

In general, testing numerical solvers for shallow water equations faces the problem that there
are no known (up to the knowledge of the authors) analytic time-dependent solutions. Thus
indirect testing is needed. This testing may focus either on qualitative properties of the �ow,
comparison with well-known numerical solvers, comparison with experimental measurements
or with approximated analytical solution. Here, we shall test our scheme by a quantitative and
a qualitative test, introduced in References [5, 6]. In Section 4, we shall also perform a test
by comparison with experimental measurements in channels with constant widths, by taking
into account friction e�ects, and another by comparison with Roe’s Solver.
We shall consider tests corresponding to the depth pro�le function H (x) de�ned as

H (x)=50:5− 40x
L
+ 10 sin

(
�
(
4x
L
+
1
2

))
(31)

and to initial and boundary conditions of the form

h(x; 0) = H (x); q(x; 0)=0

h(0; t) = ’(t) +H (0); q(L; t)=  (t)
(32)

where the functions ’(t) and  (t) are speci�ed for each particular test.
Notice that the actual initial conditions that we consider correspond to �ow at rest. Also,

we shall consider in this section subcritical �ows, so we set a Dirichlet boundary condition
at x=0 and another at x=L. In the two tests below we impose h in x=0 and q in x=L.
However, for the numerical method we need four boundary conditions. Therefore, we also
impose @nq=0 in x=0 and @nh=0 in x=L. These are not physical boundary conditions, so
they can produce some inaccuracies.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:23–55



A FLUX-SPLITTING SOLVER FOR SHALLOW WATER EQUATIONS 33

The numerical results that we present correspond to the numerical source term given by
(25), for which the enhanced consistency condition is achieved, by Theorem 1.

Test 1 (Quantitative test): Let us, respectively, denote by F the Froude number and by
U a non-dimensional velocity of the �ow

F=
U√
gH ∗ ; U=

L
TU

where H ∗ and U denote the characteristic depth and velocity of the �ow. In Reference [5]
an asymptotic analysis of shallow water equations (1) with respect to the parameter F when
U ≈ 1 is performed. Concretely, it is formally proved that, in the limit

F→ 0

the solution (h; q) of (1) with initial conditions (32) approaches the pair of functions

ĥ(x; t) =’(t) +H (x) (33)

q̂(x; t) =−’′(t)(x − L) +  (t) (34)

Notice that for this solution, the water surface level is constant at each �xed time.
In our test, we have taken

’(t) = 4 + 4 sin
(
�
(

4t
86 400

+
1
2

))

 (t) = 0

We have considered space and time intervals [0; L]= [0; 14 000] (in m) and [0; T ]= [0; 10 800]
(in s). This approximately corresponds to the parameters F=0:06 (strongly subcritical �ow).
The time t=10800 (3 h) corresponds to half downward tide.
The space interval [0; L] has been divided into 50 subintervals. We have iterated in time

our scheme with 0.8 for the CFL condition.
We present our results for time t=T =10800. In Figure 1 we compare the computed

velocity u= q=h versus the analytical velocity û= q̂=ĥ. We observe a very good accuracy of
our computation. Also, in Figure 2 we present the free surface, which in fact is very accurately
constant along the interval [0; L].

Test 2 (Qualitative test): In this test, we analyse the accuracy of our scheme in the
computation of the speed of waves.
We consider a long domain, L=648 000 m (648 km), and analyse the penetration in the

channel of a rising tide of 4 m of amplitude. This correspond to the initial conditions given
by

’(t) = 4 + 4 cos
(
�
(

4t
86 400

+
1
2

))

 (t) = 0
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Figure 1. Test 1: velocity at t=10 800.
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Figure 2. Test 1: free surface at t=10 800.
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Figure 3. Test 2: velocity at t=10 800.

As the speed of small waves is

c=
√

gh

then in 10 800 s (3 h) the rising tide cannot penetrate in the channel more that about 216 km.
We are still dealing with subcritical �ow, as this test corresponds to a Froude number F� 0:6.
However, this large value of F does not �t in the framework of the previous case.
We have taken �x=L=50=12 960 and CFL equal to 0:8, so we have iterated 2160 time

steps up to half rising tide time, t=10800 s.

In Figure 3, we observe that the velocity computed by our scheme e�ectively is zero for
approximately x¿216 000, as we expected. Also, the free surface (Figure 4) remains constant
from this point.
Globally, the performance of our scheme for these analytical tests is quite close to that of

the extension of Roe’s scheme reported in Reference [5].

4. VARIABLE WIDTH AND FRICTION EFFECTS

In this section, we extend our solver to the case when the source terms take into account
variable width of the channel and friction e�ects, in addition to variable depth. We prove
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Figure 4. Test 2: free surface at t=10 800.

that a enhanced consistency condition is still satis�ed, and perform some numerical tests that
exhibit the performances of our solver for these source terms.
We shall consider a source term for Equation (1) with the following structure:

G(x;W )=G1(x;W ) +G2(x;W ) +G3(x;W ) (35)

Here G1 takes into account variable depth as in the preceding section

G1(x; (h; q))=

(
0

ghH ′(x)

)
(36)

Also, G2 represents the action of variable width on the �ow

G2(x; (h; q))=




−q
b′(x)
b(x)

−q2

h
b′(x)
b(x)


 (37)

where b(x) is the width of the channel at position x. We shall assume that b(x) is a positive
and twice continuously di�erentiable function on [0; L].
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G3 represents the bottom and sidewalls friction e�ects

G3(x; (h; q))=




0

−gq
∣∣∣q
h

∣∣∣
(
M 3=2
b

h
+
2M 3=2

w

b(x)

)4=3

 (38)

where Mb and Mw, respectively, are the bottom and wall Manning coe�cients (Cf. Refe-
rence [12]).
Corresponding to the structure of the source term (35), we shall consider a numerical source

term of the form

G(xi−1; xi; xi+1; Wi−1; Wi;Wi+1)= (G1 + G2 + G3)(xi−1; xi; xi+1; Wi−1; Wi;Wi+1) (39)

where G1, is still given by (17)–(22). Also, to de�ne G2 and G3 we use the same idea as
for the construction of G1 but, in addition, we shall di�erently treat each equation (similarly
to the construction of the numerical �ux �). We concretely de�ne the lth component of the
Gj, j=1; 2; 3, by

[Gj(xi−1; xi; xi+1; Wi−1; Wi;Wi+1)]l=[GjL]l + [GjR]l

=
[
(xi − xi−1)=2

�xi
(I + |Bl

j (Wi−1; Wi)|(Bl
j )

−1(Wi−1; Wi))G̃j(xi−1; xi;Wi−1; Wi)
]
l

+
[
(xi+1 − xi)=2

�xi
(I − |Bl

j (Wi;Wi+1)|(Bl
j )

−1(Wi;Wi+1))G̃j(xi; xi+1; Wi;Wi+1)
]
l

(40)

Here, we de�ne Bl
j for j=1; 2; 3, l=1; 2 by

Bl
j (Wi;Wi+1)= Ãl

j

(
Wi +Wi+1

2

)

with

Ãl
j = X̃ l

j�(X̃
l
j )

−1

where

X̃ l
j =

(
1 0

0 cj; l

)
X

for some real numbers cj; l to determine. Due to the analysis of the preceding section, we set
c1;1 = c1;2 = 2.
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Also, the functions G̃j(xi; xi+1; Wi;Wi+1) are approximations of Gj(xi+1=2; Wi+1=2); j=1; 2; 3.
We de�ne G̃1 by (25), and set

G̃2(xi; xi+1; Wi;Wi+1)=




−(qi + qi+1)
1

xi+1 − xi
b(xi+1)− b(xi)
b(xi+1) + b(xi)

− (qi + qi+1)2

hi + hi+1

1
xi+1 − xi

b(xi+1)− b(xi)
b(xi+1) + b(xi)


 (41)

and

G̃3(xi; xi+1; Wi;Wi+1)

=




0

−g
qi + qi+1
2

∣∣∣∣ qi + qi+1
hi + hi+1

∣∣∣∣
(
2M 3=2

b

hi + hi+1
+

4M 3=2
w

b(xi) + b(xi+1)

)4=3

 (42)

We recall that G̃3(xi; xi+1; Wi;Wi+1) is an approximation of

1
xi+1 − xi

∫ xi+1

xi
G3(x;W ) dx

De�nition (42) uses a modi�cation of the mid point rule to approximate this integral. It is a
second-order accurate cuadrature rule.
The enhanced consistency condition for this case cannot be referred to the solution h=H ,

q=0 as for these functions G2 = 0 and G3 = 0. We instead use the stationary solution of
Equations (1) with source term (35) reported in Reference [13],

�W (x)=




�h

�hk
b(x)


 (43)

where �h and k are arbitrary constants. We shall assume �h¿0, as it represents the height of
a water column. The depth function H is not arbitrary here, but instead it is determined in
order to have (43) solution of (1) with source term (35),

H (x)=H (0) +
k2

2g

(
1

b2(x)
− 1

b2(0)

)
+ k|k|

∫ x

0

1
b2(s)

(
M 3=2
b

h
+
2M 3=2

w

b(s)

)4=3
ds (44)

We may now state our main result.

Theorem 2
The �ux-splitting scheme de�ned by (4), (15), (17)–(22) with c1;1 = c1;2 = 2, and (40)–(42)
veri�es the following:

1. In the absence of friction terms, the scheme satis�es the exact Berm�udez–V�azquez
condition with respect to the stationary solution (43) if c2;1 = 2

3 and c2;2 = 2.
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2. For general source terms given by (35), the scheme satis�es the approximated
Berm�udez–V�azquez condition with respect to the stationary solution (43) if in addi-
tion c3;1 = c3;2 = 2.

Proof
We start by calculating the expressions for the numerical �ux and numerical source terms for
general source terms. This will be next applied to each particular case.
Again, we shall denote �W (x) by �W and �W (xi) by �Wi.
To derive the expression for the numerical �ux, let us recall that the eigenvalues of A( �W )

are

�1 =
k
b
+

√
g�h
2
; �2 =

k
b
−
√

g�h
2

The actual expressions for A+( �W ) and A−( �W ) will depend on which �i are positive. We shall
treat here the case �1¿0, �2¡0. The other possible cases (�1¿0, �2¿0 and �1¡0, �2¡0)
are straightforward.
When �1¿0, �2¡0, using (7), (8) and (10) we deduce

A+( �W )=
1

�2 − �1

(
�1�2 −�1

�2(�1)2 −(�1)2

)

A−( �W )=
1

�2 − �1

( −�1�2 �2

−�1(�2)2 (�2)2

)

Observe that �1 �= �2 as �h¿0. From the preceding expressions

(a1)+( �W )=
−1√
2g�h


k2

b2
− g�h
2
;−k

b
−
√

g�h
2




(a2)+( �W )=
−1√
2g�h



(
k
b
− g�h
2

)(
k
b
+

g�h
2

)2
;−

k

b
+

√
g�h
2



2



(a1)−( �W )=
−1√
2g�h


−k2

b2
+

g�h
2
;
k
b
−
√

g�h
2




(a2)−( �W )=
−1√
2g�h



(
−k
b
− g�h
2

)(
k
b
− g�h
2

)2
;


k

b
−
√

g�h
2



2


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Consequently, the numerical �ux is given by

�( �Wi; �Wi+1) =



(a1)+

(
�h;

k �h
2

(
1
bi
+

1
bi+1

))

(a2)+
(
�h;

k �h
bi

)

 �Wi

+



(a1)−

(
�h;

k �h
2

(
1
bi
+

1
bi+1

))

(a2)−
(
�h;

k �h
bi+1

)

 �Wi+1

Then,

�( �Wi; �Wi+1)− �( �Wi−1; �Wi)

=




k �h
2

(
1

bi+1
− 1

bi−1

)
− k2

2g

√
g�h
2

(
1

b2i+1
+

1
b2i−1

− 2
b2i

)

k2�h
2

(
1

b2i+1
− 1

b2i−1

)
− k �h

√
g�h
2

(
1

bi+1
+

1
bi−1

− 2
bi

)

 (45)

We next calculate the numerical source term. The functions G̃1, G̃2 and G̃3, respectively,
de�ned in (25), (41) and (42), are given by

(xi+1 − xi)G̃1(xi; xi+1; �Wi; �Wi+1)

=




0

�h
k2

2

(
1

b2(xi+1)
− 1

b2(xi)

)
+ g�hk|k|

∫ xi+1

xi

1
b2(s)

(
M 3=2
b
�h
+
2M 3=2

w

b(s)

)4=3
ds




(xi+1 − xi) G̃2(xi; xi+1; �Wi; �Wi+1)=




k �h
(
1

bi+1
− 1

bi

)
k2�h
2

(
1

b2i+1
− 1

b2i

)



G̃3(xi; xi+1; �Wi; �Wi+1)

=




0

−g�hk|k|
(
1
2

(
1
bi
+

1
bi+1

))2(M 3=2
b
�h
+

4M 3=2
w

bi + bi+1

)4=3


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Also,

I + |Bl
j ( �Wi; �Wi+1)|(Bl

j )
−1( �Wi; �Wi+1)

=−
√
2
g�h




k
2

(
1

bi−1
+
1
bi

)
−
√

g�h
2

−1
cj; l

cj; l

(
k2

4

(
1

bi−1
+
1
bi

)2
− g�h
2

)
−k
2

(
1

bi−1
+
1
bi

)
−
√

g�h
2




I − |Bl
j ( �Wi; �Wi+1)|(Bl

j )
−1( �Wi; �Wi+1)

=−
√
2
g�h




−k
2

(
1

bi+1
+
1
bi

)
−
√

g�h
2

1
cj; l

−cj; l

(
k2

4

(
1

bi+1
+
1
bi

)2
− g�h
2

)
k
2

(
1

bi+1
+
1
bi

)
−
√

g�h
2




We next consider separately the cases with and without friction e�ects.
Step 1: If we do not take into account friction e�ects (Mb =Mw =0), then, by (40),

�xiG(xi−1; xi; xi+1; �Wi−1; �Wi; �Wi−1)=�xi(G1 + G2)(xi−1; xi; xi+1; �Wi−1; �Wi; �Wi−1)

=




k �h
2

(
1

bi+1
− 1

bi−1

)
− k2

g

√
g�h
2

(
1
2

(
1

c2;1
− 1
)
+
1
4

)(
1

b2i−1
+

1
b2i+1

− 2
b2i

)

k2�h
2

(
1

b2i+1
− 1

b2i−1

)
− c2;2

2
k �h

√
g�h
2

(
1

bi−1
+

1
bi+1

− 2
bi

)
+

√
g�h
2

k3

4g
(c2;2 − 2)((

1
bi+1

+
1
bi

)2( 1
bi+1

− 1
bi

)
−
(
1
bi
+

1
bi−1

)2( 1
bi

− 1
bi−1

))




This expression must coincide with (45) in order the enhanced consistency condition to hold.
This requires the following three equations (with two unknowns) to hold

1
2

(
1

c2;1
− 1
)
+
1
4
=
1
2

c2;2
2
= 1

c2;2 − 2 = 0

The �rst equation holds with c2;1 = 2
3 , while the second and third ones hold with c2;2 = 2.
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Step 2: The di�erence of numerical �uxes is balanced by the numerical source terms G1
and G2 of step 1. When we include friction e�ects, due to the de�nition of H (44), a new
summand �G1 appear in G1. Then, it su�ces to prove that �G1 + G3 =O(�x2).
We compute the right and left components of �G1 = �G1;L + �G1;R and G3 =G3;L + G3;R,

[ �G1;R + G3;R](xi; xi+1; �Wi; �Wi+1)=
1
�xi




g�hk|k| 1√
2g�h

(
1

c3;1
Mi − 1

c1;1
Ni

)

g�hk|k|

k
2

(
1
bi
+

1
bi+1

)
−
√

g�h
2


 (Mi − Ni)




where

Mi = (xi+1 − xi)
[
1
2

(
1
bi
+

1
bi+1

)]2(M 3=2
b
�h
+

4M 3=2
w

bi + bi+1

)4=3

Ni =
∫ xi+1

xi

1
b2(s)

(
M 3=2
b
�h
+
2M 3=2

w

b(s)

)4=3
ds

Mi is the result of applying a modi�cation of the midpoint numerical integration rule to the
integral appearing in Ni. As the integrand is a C2 function and this formula is second-order
accurate, taking c3;1 = c1;1 = 2 we have �G1;R +G3;R =O(�x2). Taking c3;2 = 2, with a similar
deduction, we prove that �G1;L+G3;L =O(�x2). Then, the approximated consistency condition
is veri�ed.

Remark 1
In the last case, using a more accurate quadrature formula for the integrals de�ning the Bi

coe�cients, we may obtain an approximated condition of order O(�xp), for p¿2 only limited
by the regularity of the function b(x).

4.1. Numerical tests

We present the results of two tests for the �ux-splitting scheme with complex source terms.
The �rst one compares the solution provided by the scheme with that of an analytical approx-
imation for small Froude numbers, similar to the test of the preceding section. The second
one compares our scheme with experimental measurements of a dam breaking experiment.
We include a comparison with the results provided by Roe’s solver.

Test 3 (Analytical test): In Reference [13] it is also reported a limit solution of shallow
water equations (1) with source terms (35), for small Froude numbers and ‘short’ domains.
Concretely, when F→ 0 and U� 1, the solution (h; q) of (1), (35) formally approaches the
pair of functions

ĥ(x; t)=’(t) +H (t); q̂(x; t)=  (t) +
’′(t)
b(x)

∫ L

x
b(s) ds
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Figure 5. Test 3: depth function.

Observe that also for this solution the surface water level is horizontal at each �xed time.
In our test we have taken the initial and boundary conditions as in (32),

h(x; 0) = H (x); q(x; 0)=0

h(0; t) = ’(t) +H (0); q(L; t)=  (t)
(46)

with

’(t)=4 + 4 sin
[
�
(

4t
86 400

− 1
2

)]
;  (t)=0

The boundary data correspond to a rising tide with amplitude of 8 m at x=0 and to a zero
discharge at x=L. Also, we have taken L=1500 (in m) and T =10800 (in s, half rising
tide). This corresponds to the parameter F� 0:1, so we may consider that we are in the
asymptotic regime F→ 0.
We have taken �x=7:5 and �t=0:4. The Manning coe�cients for bottom and sidewalls

taken are

Mb = 0:1; Mw =0:18

Also, we have taken the pro�le bottom and width functions proposed in Reference [13], these
are, respectively, represented in Figures 5 and 6.
As the �ow for this test is subcritical, we impose the same boundary conditions as in Tests

1 and 2.
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Figure 6. Test 3: width function.
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Figure 7. Test 3: computed water surface at t=10 800.
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Figure 8. Test 3: computer versus analytical discharge at t=10 800.

We, respectively, present in Figures 7 and 8 the computed free surface and the discharge,
compared with the analytical solution, at time t=T =10800. We observe that the free surface
is e�ectively horizontal. The maximum error between computed and analytical solution at grid
nodes is 2× 10−3.

Test 4 (Dam break experiment): Our last test consists in comparing the results of our
solver with the measurements of a dam break experiment, performed in the Laboratoire de
Recherches Hydrauliques of the Universit�e Libre de Bruxelles, under the direction of Prof.
J. M. Hiver. These measurements have been used in Reference [12] to test the extension of
Roe’s solver developed by V�azquez Cend�on in Reference [6].
In this test h can be equal to zero (dry zones), so a special discretization of the source

term G1 should be used, in such a way that no arti�cial pressure is introduced. We use a
technical trick proposed in Reference [12]. Essentially, this trick consists in modifying the
bottom slope in cells with dry=wet zones, in order to respect the mass conservation.
Certainly, comparison with experimental measurements is the ultimate test for a numerical

model, as it yields its true accuracy with respect to the physical behaviour of the �ow. Nev-
ertheless, in our case it must be considered as a relative test, as the solver is only intended to
approximate the solutions of the continuous shallow water equations model (1). This model
does not contain internal di�usion e�ects, neither turbulence modelling. Moreover, its deriva-
tion is based upon the hydrostatic pressure hypothesis. Therefore, the momentum conservation
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Figure 9. Test 4: channel pro�le. Free out�ow.
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Figure 10. Test 4: measurement points

equation of model (1) would be far from representing the true momentum balance in zones
where turbulent e�ects take place, or the �ow evolves in horizontal and vertical scales of
similar sizes.
The testing of accuracy should be conditioned by these facts. We may, however, test the

accuracy of the computations of the speed of surface travelling waves, which is not highly
a�ected by di�usion e�ects. We may also test the accuracy of our solver by comparison with
other solvers with good stability and accuracy properties.
The experiment is as follows. A reservoir of 15:5 meters length is �lled with water up

to a height of 0:75 m. A �oodgate separates the reservoir from a straight channel of 22:5 m
length, with a triangular obstacle of 0:4 m height and 6 m length (See Figure 9). The width
is constant 1:75 m. Three kinds of out�ow boundary are considered: Free exit (Test 4.1,
Figure 10), short vertical wall (Test 4.2, Figure 13), large vertical wall (Test 4.3, Figure 16).
The experimental data available are the free surface position along the time interval [0; 40]
(s), at 20 points, represented in Figure 10. The Manning coe�cients for bottom and sidewalls
are Mb = 0:0125 and Mw =0:011.
In our experiments we have taken 152 points along the channel, corresponding to �x=

25 cm. We have adapted the second-order four-step explicit Runge–Kutta scheme used in
Reference [14], for the time discretization.
To solve the Cauchy problem

y′(t)=f(t; y(t))

y(t0)=y0
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this scheme updates yn to yn+1 in four intermediates steps:

yn;0 =yn tn;0 = tn

yn; k =yn + �k�tnf(tn; k−1; yn; k−1)

tn; k = tn + �k�tn k=1; 2; 3; 4

yn+1 =yn;4 tn+1 = tn;4

with

�1 = 0:11; �2 = 0:2766; �3 = 0:5; �4 = 1

This provides a solver with an overall second-order accuracy. Thus, we may expect that the
discrepancies between numerical results and experimental measurements are mainly due to
the continuous model, rather than to the numerical solver. The increase of computational
complexity involved for using this second-order solver is not high, as it provides stable
solutions with CFL numbers up to 2.5, while the explicit Euler scheme is stable for CFL
numbers up to 0.8.
At the solid wall (located at x=0) we impose the physical boundary conditions q=0 and

also @nh=0.
We, respectively, represent in Figures 12, 15, 18 the water surface at t=20s, and in Figures

11–16 and 17, 18 the time evolution of the computed free surface at points G10, G11, G13
and G20 for sub-tests 4.1–4.3 below. These points likely are the more meaningful, as the
�rst three are situated along the obstacle (in particular, the top of the obstacle is situated at
G13), and the fourth one is between the obstacle and the out�ow boundary.

Test 4.1 (Free out�ow condition): We have simulated this case by imposing the conditions

@nh=0; @nq=0

at the out�ow boundary (x=38).
We may observe a good accuracy at all points considered. The speed of propagation of

discontinuities is well computed. Even the overall pattern of the free surface evolution at the
top of the obstacle (point G13) is well reproduced. In general, the computed heights are larger
than the physical ones. We think that this is a consequence of the lack of energy dissipation
mechanisms in our model.

Test 4.2 (Short vertical wall at out�ow boundary): In this case the end section of the
channel, between the obstacle and the out�ow boundary, is assumed to be �lled with water
at rest at time t=0. There exits an engineering law which models the out�ow boundary
condition,

q=Cw(h− hv)2=3

where hv is the height of the out�ow vertical wall (in our case, hv = 15 cm) and Cw is an
empirical constant (usually, Cw =1:7). In our case, we have preferred to simulate the vertical
wall as a part of the bottom function with an in�nite gradient. Numerically, this gradient is
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Figure 11. Test 4.1: free surface evolution at measurement points. Solid line: numerical
results. Dotted line: experimental measurements.

taken as hv=�x. At the last out �ow point we have set @nq= @nh=0. This provides practically
the same results.
In this case, we still recover a good accuracy for our computed free surface (Figure 14).

The same comments as for Test 4.1 still apply here. Moreover, there exist small re�ections
due to the presence of the out�ow wall. This is made apparent in the history at point G20,
where we may observe the passage of two fronts, whose velocities are accurately simulated.

Test 4.3 (Large vertical wall at out�ow boundary, Comparison with Roe’s solver): In this
case, we have set the boundary conditions q=0, @nh=0 to simulate the e�ect of the out�ow
wall. The presence of the wall at the out�ow boundary produces several re�ections which
travel back and forth along the channel and are in their turn re�ected by the obstacle.
The overall pattern of the time behaviour of the free surface is again correctly represented

by the numerical solution. The four fronts passing along the point G13 are recovered, so as
their speed of propagation, and the zero depth in the time interval [29,33], approximately. In
point G20 these characteristics also are correctly simulated, with a quite satisfactory accuracy.
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Figure 12. Test 4.1: computed water surface at t=20 s.
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Figure 13. Test 4.2: channel pro�le. Short vertical wall at out�ow boundary.

However, for the measurement points situated G10 and G13, there are relatively large devi-
ations with respect to the experimental measurements. This probably occurs at �rst because
there is no loss of �uid across an out�ow boundary, and then the total energy of the system
is conserved. Very likely, this produces high levels of turbulence in this �ow, especially close
to these points.
Moreover, the point G10 is situated in a corner where possibly the boundary layer detaches

and a recirculation zone takes place. This would invalidate the hydrostatic pressure assumption
in this zone. This could explain the larger discrepancies between experimental measurements
and numerical results at point G10, with respect to the other points considered.
We also compare for this Test 4.3 the solution provided by our solver with that provided by

the extension of Roe’s solver introduced in Reference [13]. In general, both solvers provide
very close results.The largest discrepancies between both solvers occur at point G13, which
correspond to the top of the obstacle. This may be due to the high irregularity of the �ow at
this point.
We also stress that the computational cost of both solvers are quite similar.
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Figure 14. Test 4.2: free surface evolution at measurement points. Solid line: numerical
results. Dotted line: experimental measurements.
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Figure 15. Test 4.2: computed water surface at t=20 s.
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Figure 16. Test 4.3: channel pro�le. Large vertical wall at out�ow boundary.
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Figure 17. Test 4.3: free surface evolution at measurement points. Solid line: �ux-splitting scheme.
Dashed line: Roe’s scheme. Dotted line: experimental measurements.

5. SOME EXTENSIONS

In this section, we present some applications of our technique, to three di�erent �ux-splitting
solvers of homogeneous shallow water equations.
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Figure 18. Test 4.2: computed water surface at t=20 s.

We introduce a scheme of �rst order, another of second order and a third one combin-
ing the preceeding two by means of �ux limiters. We give a common structure to extend
these solvers for non-homogeneous shallow water equations in order to verify the Berm�udez–
V�azquez condition.
We propose a new �ux-splitting method which is de�ned by (11), (12) and

B1(Wi;Wi+1) =
A(Wi) + |A((Wi +Wi+1)=2)|

2
;

B2(Wi;Wi+1) =
A(Wi+1)− |A((Wi +Wi+1)=2)|

2

(47)

This scheme uses a combination di�erent from the schemes of Steger Warming and Vijaya-
sundaram, so that it uses centred evaluations of the upwinding components and decentered
evaluations of the centred components. It is a new �ux splitting method which exhibits better
stability properties than directly Steger Warming or Vijayasundaram methods, in the neigh-
bourhood of sonic points and shock waves.
We construct the extension of this scheme to non-homogeneous shallow water equations.

We decompose the source term as

G(xi;Wi)= 1
2 [I + |Ã∗|Ã−1]G(xi;Wi) + 1

2 [I − |Ã∗|Ã−1]G(x;W ) (48)

where Ã= X̃�X̃−1 with X̃ =PX and P is the same eigenvectors scaling matrix as in previous
sections.
Notice that in (48) we introduce matrix Ã∗, de�ned as Ã∗=Y�Y−1 with Y =QX . In

previous sections Q is equal to P, but they can be di�erent, in such a way the technique can
be applied to other schemes such as the ones we introduce here.
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Then, if Q1 is the scaling matrix related to G1, Q3 to G3 and Q1
2, Q

2
2 to the �rst and second

component of G2, we de�ne

Q1 =Q1
2 =Q3 =

(
1 0

0 1=2

)
and P22 =Q1

2 =

(
1 0

0 1

)
(49)

Therefore, the numerical source terms are

Gl
j (xi−1; xi; xi+1; Wi−1; Wi;Wi+1)= (Gl

j )L(xi−1; xi;Wi−1; Wi) + (Gl
j )R(xi; xi+1; Wi;Wi+1) (50)

for j=1; 2; 3 and l=1; 2, with

(Gl
j )L(xi−1; xi;Wi−1; Wi)

=
(xi − xi−1)=2

�xi
[I + |(B∗

j )
l(Wi−1; Wi)|(Bl

j )
−1(Wi−1; Wi)]G̃j(xi−1; xi;Wi−1; Wi) (51)

(Gl
j )R(xi; xi+1; Wi;Wi+1)

=
(xi+1 − xi)=2

�xi
[I − |(B∗

j )
l(Wi;Wi+1)|(Bl

j )
−1(Wi;Wi+1)]G̃j(xi; xi+1; Wi;Wi+1) (52)

where Bl
j (Wi;Wi+1) is de�ned as in Section 2.2 and (B∗

j )
l is de�ned as follows:

(B∗
j )

l(Wi;Wi+1)= (Ã∗)lj

(
Wi +Wi+1

2

)
and (Ã∗)lj=Y l

j �(Y
l
j )

−1

with Y l
j =Ql

jX , where we understood Q1
1 =Q2

1 =Q1 and Q1
3 =Q2

3 =Q3. Then, we have the
following result.

Theorem 3
The �ux-splitting scheme de�ned by (11), (12), (47), (49), (50), (51) and (52) veri�es the
following:

1. The �ux-splitting scheme satis�es the exact Berm�udez–V�azquez condition with respect
to the stationary solution (24).

2. In the absence of friction terms, the scheme satis�es the exact Berm�udez–V�azquez con-
dition with respect to the stationary solution (43).

3. For general source terms, the scheme satis�es the approximated Berm�udez–V�azquez
condition with respect to the stationary solution (43).
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Now, we present a new �ux-splitting second-order method which is de�ned by (11), (12)
and

B1(Wi;Wi+1) =
A(Wi) + (�t=�xi)A2((Wi +Wi+1)=2)

2

B2(Wi;Wi+1) =
A(Wi+1)− (�t=�xi)A2((Wi +Wi+1)=2)

2

(53)

This is an extension of Lax–Wendro�’s method for hyperbolic equations with constant coef-
�cients. The numerical source term is de�ned by (50), (51) and (52) where only di�er the
de�nition of (B∗

j )
l:

(B∗
j )

l=
�t
�xi

((Ã∗)lj)
2

Then, for this scheme we have the same results as in Theorem 3. This is a second-order
scheme, therefore this scheme can be oscillatory near shock waves [15]. To avoid this di�-
culty, we de�ne a new �ux-splitting solver which involves the two above schemes by means
of �ux limiters. This scheme is de�ned by (11), (12) and

B1(Wi;Wi+1) =
A(Wi) + ( (r)(�t=�xi)A2 + (1−  (r))|A|))((Wi +Wi+1)=2)

2

B2(Wi;Wi+1) =
A(Wi+1)− ( (r)(�t=�xi)A2 + (1−  (r))|A|))((Wi +Wi+1)=2)

2

(54)

where  (r) is a �ux limiter (see Reference [10]). The numerical source term of this scheme
is de�ned by (50)–(52) and

(B∗
j )

l=  (r)
�t
�xi

((Ã∗)lj)
2 + (1−  (r))|(Ã∗)lj|

Still in this case Theorem 3 holds.
The technique that we present in this work can also be applied to other schemes, such

Steger-Warming or Vijayasundaram. Also, we can apply this technique to other equations, for
example, non-homogeneous Euler equations.

6. CONCLUSION

In this paper, we have introduced a �ux-splitting solver for 1D shallow water equations with
source terms, which satis�es a strengthened consistency condition for stationary solutions.
The main methodological innovation is the construction of the numerical source terms using
a re-scaling of the eigenvectors of the �ux matrix. The practical performances of this solver
in several tests cases are quite close to those of Roe’s solver, with slightly higher numerical
di�usion and quite similar computing cost. We have, thus, developed an easy-to-programme
and performing solver for the focused equations. The extension of this solver to a wide class
of solvers satisfying the enhanced consistency conditions, of which both Q-schemes and �ux-
splitting schemes are particular cases, in addition to some new solvers, is in progress and
shall be reported in a forthcoming paper.
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